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Abstract. Corner transfer matrices are used to calculate the order parameters of the self-dual 
Ashkin-Teller model on the square lattice. In the non-critical regime, it is found that the 
model is partially ordered, i.e. the magnetisations (sl) and (II) vanish while the polarisation 
(s I f , )  is non-zero. The polarisation, which is given simply in terms of elliptic functions, 
exhibits an essential singularity at criticality. 

1. Introduction 

The complete phase diagram of the isotropic square lattice Ashkin-Teller model has 
been deduced by the application of a variety of techniques. Arguments using duality 
(Fan and Wu 1970), continuity (Wu and Lin 1974), the study of limiting cases (Knops 
1975), series analysis (Ditzian et al 1980), as well as correlation inequalities (Pfister 
1982), have established the general features of the phase diagram and the various types 
of ordering. A succinct summary of these results for the isotropic Ashkin-Teller model 
can be found in Baxter (1982) and a phase diagram is shown in figure 1. 

The isotropic Ashkin-Teller model is known to be exactly solvable along its self-dual 
line (Fan 1972a). Recently, Pearce (1987) has obtained a two-dimensional exact 
solution manifold for the anisotropic model which, when restricted to isotropic interac- 
tions, coincides with the self-dual line. Most importantly, however, this more general 
solution allows commuting transfer matrix methods to be applied to the Ashkin-Teller 
model. The key to the study of the commuting row-to-row transfer matrices is the 
inversion identity as discussed in Pearce (1987). 

In this paper we apply commuting corner transfer matrix techniques to the 
anisotropic Ashkin-Teller model to obtain exact expressions for the order parameters 
on the exact solution manifold. In $ 2  we define the model, recall its parametrisation 
and verify the star-triangle or Yang-Baxter relations. Appropriate corner transfer 
matrices are set up and diagonalised in Q 3. Finally, the order parameters are obtained 
in $ 4 and the limiting behaviour of the polarisation is examined. 

In a forthcoming paper (Pearce and Seaton 1989) we obtain the order parameters 
for a more general off-critical integrable extension of the Ashkin-Teller model and 
discuss these results in the light of recent work on conformal invariance. 

§ Permanent address: Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, 
Australia. 
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Figure 1. The phase diagram of the ferromagnetic isotropic Ashkin-Teller model in the 
thermodynamic space spanned by the two-spin interaction K and the four-spin interaction 
K,. The regions marked I, I1 and I11 are ferromagnetically ordered, disordered and 
partially ordered, respectively. The line ACD is the self-dual line given by sinh 2 K  = 
exp(-2K4). The segment CD, shown broken, is the partially ordered line studied here. 
AC is a critical line with continuously varying exponents. The lines CB and CE, shown 
schematically, are lines of king-like critical behaviour. 

2. The model and star-triangle relations 

The square lattice Ashkin-Teller model is an interaction-round-a-face or IRF model 
(Baxter 1982). Each site i of the lattice is occupied by a four-state spin ai = 1,2,3,4.  
Because of the symmetries of the model, it is convenient (Fan 1972b) to represent each 
four-state spin as a compound spin U, = ( s i ,  t i )  where si, ti = *l are Ising spins. We 
will use the correspondence 1 = (+, +), 2 = (-, -), 3 = (-, +), 4 = (+, -). The 
Boltzmann weight of a square face ( i ,  j ,  k, I ) ,  as shown in figure 2, can then be written 
in terms of compound spins as 

w(fli ,  uj, uk, U,) = wl(ui, uk) w2(uj, U,) (2.1) 

Figure 2. A face of the square lattice surrounded by the lattice sites i, j ,  k, 1. The Boltzmann 
weight of the face factors over the two sublattices shown by full and open circles. 



Selfdual Ashkin- Teller model 2569 

where 

Here J, K are two-spin interactions, J4 and K4 are four-spin interactions, the rv, are 
arbitrary gauge factors and p , ,  p2 are normalisation factors. 

The square lattice consists of two interpenetrating sublattices which we label 0 and 
1. Because the interactions (2.2) act only across the diagonals of the square faces, the 
Ashkin-Teller model, as defined, is actually a superposition of two independent square 
lattice models with nearest-neighbour interactions, one on each sublattice. The Ashkin- 
Teller interactions are thus invariant under four independent partial spin-reversal 
symmetries given by si -j -si or t ,  + - t i  for all sites i on either sublattice 0 or sublattice 
1. For ferromagnetic interactions, i.e. when J, K ,  J4, K,>  0, there are therefore sixteen 
ground-state configurations obtained from the uniform configuration a, = (+, +) by 
application of the four partial spin-reversal symmetries to the two sublattices. 

As given in Pearce (1987), the two-dimensional exact solution manifold of the 
anisotropic Ashkin-Teller model is determined by the two constraints 

sinh 25, sinh 2K4 
sinh 2J  sinh 2K 

= A/2 -- - (2.3) 

[exp(4J4)-l][exp(4K4)-1] = A' (2.4) 

among the four thermodynamic parameters J, K ,  J4, K4. Alternatively, the exact 
solution manifold can be parametrised in terms of a spectral parameter U and a crossing 
parameter A. This parametrisation is defined by the relations 

2 cos A O s A s 2  
2 cosh A 

A = {  A > 2  

and 

sin U O s A s 2  
sinh U A >  2 

s ( u )  = 

with 

s = s ( u ) / s ( h )  = tanh 2K s- = s(A - u) /s (A)  = tanh 2J. (2.7) 

Then, showing the dependence on the gauge factors r and the spectral parameter U 
explicitly, the weights are parametrised by 

( 2.8) W, ( ai, aj 1 r, U ) = r,,, ru, [ ( 1 + s ) + s-( sisj + titj) + ( 1 - s ) s i s j t i t j ] /  2& 

W2(ai ,  ajlr,  U )  = Wl(ai,  aj l r - ' ,  A - U )  

p , = ( s / 2 ) 1 / 2 ( 1 - s - )  2 1/4 

W(aj ,  a k ,  a/, a i ( r ,  U )  = W(ui, aj, ( T k ,  ul1r-', A -U). 

(2.9) 
where we have chosen the normalisation factors: 

p2 = (s-/2)"2( 1 - s2)lI4. (2.10) 

These weights possess the rotation or crossing symmetry: 

(2.11) 

They also satisfy inversion relations as stated in Pearce (1987). 
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The star-triangle or Yang-Baxter relations (Baxter 1982) for the Ashkin-Teller 
model take the form 

wl(G-, 7 l U )  wl(G-’, 7 / U ‘ )  Wl(G-”, T I U ” )  
5 

=AWI(u ,  u’IA -u“)WI(G-‘, (+“]A - U )  W,(G-”, G-IA -U‘) (2.12) 

where A is a constant to be determined and 

U + U‘+ U ” =  A. (2.13) 

These equations must hold for all values of the spins U, U ’ ,  U ” .  There are 43 choices 
of U, U’ ,  U” but the symmetries of the weights and of (2.13) reduce the number of 
independent cases to be considered. Up to permutations of unprimed, primed and 
double primed variables, there are four distinct cases: 

g = U ’  = ut’ = 1 

(+ = ( + I  = 1, U‘‘ = 2 

(+ = ( T I =  1, ( + ’ I =  3 

G - =  1, G-’=2, G-”=3. 

Substituting these four cases into (2.12) and using the obvious notation 

s(A -U”) s! = 
s( U”) = - s(A - U‘) 

s’= st=- S ( U ‘ )  

s(A) s(A) s(A) s(A) 

( 2 . 1 4 ~ )  

(2.14b) 

gives 

1 + s - s I +  s’s!!+s!!s-+ ss‘s‘’= A(1+ s ) ( l +  st ) (  1 + s”)/2 

1 + S-S’ - s’_s!! - S!!X + SS~S”= A( 1 + s”)( 1 - s f ) (  1 - s ) /2  

( 2 . 1 5 ~ )  

(2.1 5 b) 

s”+ s-s’s”+ ss’ = As-s’_( 1 + ~ ” ) / 2  

s ” - s - s ’ ~ ” +  ss’ = A s - ~ l (  1 - ~ ” ) / 2 .  

( 2 . 1 5 ~ )  

(2.15d) 

These equations are satisfied if A = 2. With this choice, the last two, and the sum of 
the first two equations all simplify to 

s-s‘ = s’I+ ss’ (2.16) 

or equivalently 

s ( A  - U )  s( U + U”) = s( A )s( U”) + s ( U )  s( A - U - U”) (2.17) 

which can be proved using Liouville’s theorem or trigonometric (0 
bolic ( A >  2) identities. The difference of ( 2 . 1 5 ~ )  and (2.15b) is 

A S  2) and hyper- 

(2.18) 

If U = A / 2  then s = s -  and from (2.7) and (2.3) the interactions are isotropic. In 

(2.19) 

which is the self-duality condition for the isotropic model (Fan 1972a). If K4< K, 
which corresponds to A < 2, this line is critical (Baxter 1982) and (s,) = ( t , )  = ( s , f , )  = 0. 
Otherwise, if A > 2, this self-duality line lies entirely within the partially ordered region 
of the phase diagram where ( s l )=( t l )=O and ( s , t , ) # O .  In calculating the order 
parameters, we thus confine our attention to the case A > 2 on the exact solution 
manifold of the anisotropic Ashkin-Teller model. In this case the parametrisation is 
hyperbolic. 

s’s! + s-s!! = s + s’”’+ s’+ ss” 
which follows from (2.17) and (2.13). 

this case (2.3) and (2.4) give 

sinh 2 K = exp( -2K4) 
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3. Corner transfer matrix calculations 

Let us define corner transfer matrices (CTM) A, B, C, D in the usual way (Baxter 1981) 
so that A corresponds to the lower right quadrant of the lattice. The (U, cr') element 
of A is 

where the product is over all faces of the quadrant, the sum is over all interior spins 
and cr = (cr l , .  . . , U,) and U'= (U;, . . . , crL) are the edge spins as shown in figure 3. 
Similarly, we define corner transfer matrices B, C, D corresponding, respectively, to 
the upper right, upper left and lower left quadrants of the lattice. The two magnetisa- 
tions of the Ashkin-Teller model can then be written as 

Tr SABCD Tr TABCD 
= Tr A BCD ( ' I )  = Tr ABCD 

where the elements of the matrices S and T are 

and the polarisation is 

Tr STABCD 
TrABCD ' 

( S l t , )  = 

(3.2) 

(3.4) 

From the crossing symmetry, it follows that 

C( r, U )  = A( r, U )  B (  r, U )  = D(  r, U )  = gA( r - ' ,  A - U )  (3.5) 

In the limit of m large, the corner transfer matrices can be diagonalised (Baxter 

(3.6) 

where g is a gauge factor arising from boundary spins. 

1982). In particular, the diagonal entries or eigenvalues of A take the simple form 

A(r,  u L , ~  = m, e x p ( - w )  

Figure 3. The corner transfer matrices A, B, C, D corresponding to the four quadrants of 
the square lattice. The central spin is vI. The spins on internal sites, shown with full 
circles, are summed over while the spins on the perimeter are fixed to the boundary values 
b, c, respectively, on the two sublattices. 
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where the values of the constants mu and a, can be determined from special limiting 
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cases. Noting that 

where h is a gauge factor arising from boundary sites. We therefore identify 

mu = 1/ hr,, . 
To determine the remaining constant a,, we first define 

x = e-A w =e-". 

In the limit A +CD or x+O we then find 

and 

Wl(ut, ujlr, U )  + Wm,v,ru,ru, 

where Wu,,J are the elements of the matrix 

1-w l+w 

This matrix is easily diagonalised as W = P-IDP where 

1 0 0 0  

o o o w  
and the orthogonal matrix P is given by 

p=p-;-.(' -; 1 1  -ij. 
-1 -1 

1 -1 -1 

Hence in the limit A +a, we find 

where 

n ( u , ,  ai, ai)= 1-(ri+sjsltjti)/2. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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We conclude that 

(3.18) 

where the values of u,+~ 
of A are therefore given by 

are fixed by the boundary conditions. The eigenvalues 

A = - WMg,g+l  . g + 2 ) .  
u.0 l f i  hru, j = 1  

Let us define the one-dimensional configuration sums: 

c qua X 2 U m + F m + 2  = 
U2 ..,U", 

where q = x2. Then from equations (3.2)-(3.5) it follows that 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

The one-dimensional configuration sums Xibc satisfy the linear recursion relations 

(3.24) 

and the initial conditions 

X ; b c  = qn(a.b,c)  (3.25) 

where a, b and c denote general values of the four-state spins. These equations also 
imply the simple alternative initial condition: 

XzbC = 8(ay b )  (3.26) 

where 6 is the Kronecker delta symbol. From the symmetries of n ( a ,  b, c )  we see that 

x? = x","c 

x a l c  = q - m x ; 2 c  

x ;b l  = x;b2 

x","c = x:bc 

x a 3 c  = q-mx;4 '  

x i 5 3  = x a b 4  

(3.27) m 

m 

so the recursion relations reduce to 

(3.28) 
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These relations and the initial conditions are unaltered if 1 is interchanged with 3, so 
it follows that 

(3.29) 

(3.30) 

leaving only 2 of the original 64 one-dimensional configuration sums XZbc to be 
determined. 

Next, let us define the polynomial Fn by 

n 

, = I  
F n ( x )  = n ( l + x ' )  

and let [ . . . 3 denote the integer part function. Then the forms 

( 3 . 3 1 )  

(3.32) 

in conjunction with (3.30) satisfy the recursion relations (3.28) provided the functions 
Y,,,(q) and Z,,,(q) in turn satisfy the recursion relations 

( qzm " )  = ( q*:-l q 2 J (  q;:l) (3.33) 

subject to the initial conditions Yl = Z ,  = 1 .  

iteration. This procedure yields the solutions 
The polynomials Y , ( q )  and Z m [ q )  can easily be obtained by diagonalisation and 

m 

or 

(3.34) 

(3.35) 

In the thermodynamic limit r n + a  these functions are simply related to Virasoro 
characters as will be discussed in Pearce and Seaton (1989). 
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4. The order parameters 

It is readily seen that the two magnetisations: 

(4 . la)  

(4.lb) 

both vanish as a consequence of the symmetries (3.27). On the other hand, using 
(3.27), the polarisation is given by 

XLbC - x3bc m 
( s , t , )=  lim 

m - x  xLbC + x?' (4.2) 

Clearly the one-dimensional configuration sums X i b c  depend on the boundary condi- 
tions b, c and on the parity of m. To remove any ambiguity, we apply boundary 
conditions so that b is on the sublattice labelled 0. The polarisation on the E sublattice, 
where E = 0 or 1, with boundary conditions b, c is then 

(4.3) 

where the known symmetries have been used and the sign factor pE = *1 is given by 

/.LE = st (4.4) 
where s, t are the two Ising spin components of b if E = 0 or c if E = 1. The sums 
involved are particular cases of the elliptic function: 

X cc 
E ( y ,  z )  = c ( -  1)nynz"("-1)/2- - ( l - z " - ' y ) ( l - z n / y ) ( l - z " ) .  

n=-ffi n = l  

So finally we obtain 
E ( x 2 ,  x4) 33 1 - X 4 n - 2  

( s l t l )F=pE(  E (  - x 2 ,  x4) ) = p c  n JJ 5 1 1 + X 4 n - 2  

(4.5) 

(4.6) 

where we have eliminated q in favour of x = e-A using q = x'. Clearly the polarisation, 
unlike the magnetisations, is in general non-zero so partial order is established at least 
in the regime A > 2 of the exact solution manifold of the anisotropic Ashkin-Teller 
model. 

To examine the limiting behaviour of the polarisation as criticality is approached, 
i.e. as A + 0 or x + 1, we need to perform a conjugate modulus transformation ofthe form 
E(exp(2u i -~ ) ,  exp(-2s)) 

(4.7) = ( T / E ) " ~  exp[-(u - . / ~ ) * / E ] E ( - ~ X ~ ( - ~ . U / E ) ,  exp(-2.*/~)). 
This gives 

)"'. (4.8) 
E (  -1, exp( -.'/A )) 

(E(-exp(-.rr2/2A), exp(-v'/A)) 
(sltl)?= pE exp(-.rr2/16A) 

Clearly the polarisation vanishes as A + 0. Moreover, since the variable which measures 
deviation-from-criticality is A', we see that the point A = 0 is an essential singularity. 
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